那如何提升做报表的效率?我从4个方面提出了建议。
FineReport做的报表
现实中IT往往成了背锅侠,这是挺扯淡的事情,只能说IT在很多企业太弱势了,业务部门从来就不曾真正的解决问题,它永远是要求当下IT必须给我正确的数据,至于如何才能从根本上解决问题,下次再说吧。
报表的中台化实现方案可以参考阿里的的数据中台,其对于指标的实现有严格的控制,但前提是需要公司顶层的支持,因为整个数据的支撑模式将发生巨大的变化,开始的时候成本是巨大的,而未来则是不确定的。
比如当业务人员提一张报表需求的时候,IT会先评估下是否有现成的指标可以支撑,如果没有,则要先实现这些指标,而为了确保这些指标的共享性,指标的设计和实现过程将花费更多的时间和精力。
但企业有多大的耐心呢?
在市场响应的及时性和IT的可复用性之间,你觉得它会做出何种选择?因此笔者看到了太多指标化神坛的垮掉。
无论如何,指标化是提升报表效率的利器,如果你能坚持到最后,那一定是很好的,但千万要获得企业的支持,这不是IT部门能自己搞定的事情,更不能两边骑墙。
从价值的角度看,报表是衡量企业运营正常与否的晴雨表,在企业的决策支持方面发挥着巨大作用,其重要性往往远超那些模型和标签,只是大家习惯了而已。
事实上,只要报表效率提升那么一点点,其创造的价值就会很大,比如财务报表提个速,虽然可能是润物细无声的。
从内涵的角度看,表哥往往将自己局限在了设想的专业领域,但事实上,要做好报表,牵扯到了组织、机制、流程、中台、技术等各个方面的问题,正如我前面提到的内容一样,我们还有太多技术含量很高的事情要去做,只是挑战都很大。
谁都会做报表,但要做好的确很难。
通过FineDataLink作为中间件,简道云数据下云本地化,原库用于提供业务负载,本地库搭配FineReport用于数据分析展示,解决了数据分析人员无法完全取到简道云数据的问题,在FineDataLink侧进行简单的配置,同步数据和附件,即可完成简道云数据的迁移。通过FineDataLink作为中间件,简道云数据下云本地化,原库用于提供业务负载,本地库搭配FineReport用于数据分析展示,解决了数据分析人员无法完全取到简道云数据的问题,在FineDataLink侧进行简单的配置,同步数据和附件,即可完成简道云数据的迁移。
整合了MES、ERP、SQS、APS、PLM等系统,建立了公司级别的数据仓库,统一数据源,统一数据分析出口。
FineDataLink和6节点的FineData相结合,自动把4个厂的MES、ERP、WMS、PLM等业务系统,通过数据库logminer、消息等进行实时采集同步;通过对ODS层的数据加工作转换进行分层建设,完成分布式数仓的搭建,10分钟内即可完成从业务库,到ODS的ELT的整个数据链条处理。