在搭建数据分析平台之前,要先明确业务需求场景以及用户的需求,通过大数据分析平台,想要得到哪些有价值的信息,需要接入的数据有哪些,明确基于场景业务需求的数据平台要具备的基本的功能,以上图为例从下至上可分为四个层次:
数据采集层:底层就是各种数据源,主要是对企业底层数据的采集和解析,将零散的数据整合起来,包括企业的核心业务数据、用户数据、日志数据、集团数据等等,通常有传统的ETL离线采集和实时采集两种方式
数据储存和处理层:有了数据底层的数据,然后根据需求和场景的不同进行数据预处理,储存到一个合适的持久化储存层中,比如说OLAP、机器学习、数据库等等
数据分析层:这里就要用到BI分析系统,比如FineBI,如果是传统的数据挖掘还有SPSS,这一层主要是对数据进行加工,然后进行深层次的分析和挖掘。
数据应用层:根据业务需求不同划分出不同类别的应用,主要是对最终的数据进行展示和可视化,如上图的数据报表、仪表板、数字大屏、及时查询等等。
总结来说,企业对数据、效率要求的逐步提高,也给大数据提供了展现能力的平台,企业构建大数据平台,归根到底是构建企业的数据资产运营中心,发挥数据的价值,支撑企业的发展。
另外从企业业务系统的角度看,我们如果把数据分析的工作直接单独放在业务系统上,一来系统的性能支撑不了这么耗费资源的事情,系统压力会很大,二来随着数据的积累,单独的业务系统很难承受大数据量的处理,所以重新构建一个大数据处理平台就是必须的了。
所以,一个数据分析平台的出现,不仅可以承担数据分析的压力,同样可以对业务数据进行整合,也会不同程度的提高数据处理的性能,基于数据平台实现更丰富的功能需求。
要想顶层应用良好,那么底层的数据建设就相当重要,所以自助式数据分析平台建设的第一步就是要搭建数据仓库。如上图所示,一般来说,数仓在技术上采用三层架构设计:ODS、DW、DM。
•ODS全称是Operational Data Store,即操作数据存储。它是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的ETL之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。
•DW全称是Data Warehouse,即数据仓库,是数据仓库的主体。在这里,从ODS层中获得的数据按照主题建立各种数据模型。
•DM全称为Date Market,即数据集市或宽表,也可称为或DWS。DM层为面向最终应用的主题层,一般依据前端报表/业务包需求进行设计,对DW层明细数据进行多表关联,用于提供后续的业务查询,其主要作用是提升报表查询性能。
在经过ETL清洗后的数据就是我们建立BI系统所需要的数据,这时候就需要通过FineBI连接企业的数据仓库。
其次,FineBI中是通过业务包的形式进行数据存储,IT人员基于业务需求将数据进行分类管理,通过设立表间的关联关系和多路径设置来进行数据整合。
这样就得到了企业业务系统的底层数据,但是这些来自不同系统的数据指标基本是混乱的、没有意义的,所以下一步就要对数据进行加工。
IT人员创建了数据连接和业务包以后,为业务人员构建BI基础的数据模型,分析用户配置好关联关系,分配好权限和设置好数据更新的频率,提供一层可供业务理解的基础模型。然后业务再在数据集中对这些数据进行进一步的加工处理,比如筛选数据、过滤数据、数据分组汇总、数据行列转行等等,经过加工后的数据就是业务进行分析的最终数据了。

通过FineDataLink作为中间件,简道云数据下云本地化,原库用于提供业务负载,本地库搭配FineReport用于数据分析展示,解决了数据分析人员无法完全取到简道云数据的问题,在FineDataLink侧进行简单的配置,同步数据和附件,即可完成简道云数据的迁移。通过FineDataLink作为中间件,简道云数据下云本地化,原库用于提供业务负载,本地库搭配FineReport用于数据分析展示,解决了数据分析人员无法完全取到简道云数据的问题,在FineDataLink侧进行简单的配置,同步数据和附件,即可完成简道云数据的迁移。
整合了MES、ERP、SQS、APS、PLM等系统,建立了公司级别的数据仓库,统一数据源,统一数据分析出口。
FineDataLink和6节点的FineData相结合,自动把4个厂的MES、ERP、WMS、PLM等业务系统,通过数据库logminer、消息等进行实时采集同步;通过对ODS层的数据加工作转换进行分层建设,完成分布式数仓的搭建,10分钟内即可完成从业务库,到ODS的ELT的整个数据链条处理。