今天给大家分享一个通过提高购物篮系数来增加销量的零售数据分析案例,话不多说,我们直接上干货!
目前A超市最大的问题就是购物篮系数偏低,一直在3.0附近,相比于其他连锁店低了25%,超市经理为了提升购物篮系数,需要先找到购物篮系数偏低的原因,再做出针对性的解决措施。
紧接着,再根据超市现状与问题,如对消费规律不清晰,对顾客缺乏洞察,商品库存管理不精细等现象,聚焦了三个分析方向:购物篮系数与时间的关系、购物篮系数与顾客购买行为的关系、以及购物篮系数与商品缺货的关系,来探索购物篮系数偏低的原因。
到了这里,分析思路已经基本明确了,接下来我们可以通过FineBI来进行探索式的数据分析。
(2)结合上述分析,发现了周末的购物篮系数普遍比工作日高。
通过FineBI快速制作对应的图表,分别观察工作日和周末的购物篮系数的日时间段分布,发现周一到周五12:00-14:00,18:00-20:00的购物篮系数明显偏低,周末却没有出现这种情况,而这段时间刚好属于下班的购物高峰期。
操作过程:
使用准备好的下班高峰期顾客购买件数汇总表,将商品件数拖入横轴,客户数拖入纵轴,为了看到各类别所占百分比数量,他使用柱状图展示,并对客户数这一指标进行了快速计算得到占比数据,得出的图表非常清晰地展示了购买1-2件商品的顾客占比高达50%,拉低了整体的购物篮系数。
很显然在目前的信息时代,借助类似于FineDataLink的这些工具,可以让企业加速融入企业数据集成和分析的趋势。备受市场认可的软件其实有很多,选择时必须要结合实际的情况。一般的情况下,都建议选择市面上较主流的产品,比较容易达到好的效果,就是帆软的数据集成平台——FineDataLink。
通过FineDataLink作为中间件,简道云数据下云本地化,原库用于提供业务负载,本地库搭配FineReport用于数据分析展示,解决了数据分析人员无法完全取到简道云数据的问题,在FineDataLink侧进行简单的配置,同步数据和附件,即可完成简道云数据的迁移。通过FineDataLink作为中间件,简道云数据下云本地化,原库用于提供业务负载,本地库搭配FineReport用于数据分析展示,解决了数据分析人员无法完全取到简道云数据的问题,在FineDataLink侧进行简单的配置,同步数据和附件,即可完成简道云数据的迁移。
整合了MES、ERP、SQS、APS、PLM等系统,建立了公司级别的数据仓库,统一数据源,统一数据分析出口。
FineDataLink和6节点的FineData相结合,自动把4个厂的MES、ERP、WMS、PLM等业务系统,通过数据库logminer、消息等进行实时采集同步;通过对ODS层的数据加工作转换进行分层建设,完成分布式数仓的搭建,10分钟内即可完成从业务库,到ODS的ELT的整个数据链条处理。